If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=49/64
We move all terms to the left:
z^2-(49/64)=0
We add all the numbers together, and all the variables
z^2-(+49/64)=0
We get rid of parentheses
z^2-49/64=0
We multiply all the terms by the denominator
z^2*64-49=0
Wy multiply elements
64z^2-49=0
a = 64; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·64·(-49)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112}{2*64}=\frac{-112}{128} =-7/8 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112}{2*64}=\frac{112}{128} =7/8 $
| 24-4x=8x-24 | | 1.2w=60 | | 3(9x+4)=27x-10 | | g4=6 | | -63=-5(3n+8)-7(7-4n) | | 125=5x+100x=1325 | | 6+a2=22 | | 6x^2-18x-1=0 | | 125=5x+100x= | | 250+3x=7x-750 | | 48=3*(2)a | | n7=4 | | 125=105x | | 1/3x=189 | | 4x+53=73−x | | 1400=990÷{(0.6÷1.2)+(x÷0.3)} | | 4x-600=2x+300 | | k^2-13k+22=0 | | y=2,700+8X | | k^2-13k+44=0 | | 3+4x=4x+5 | | 7y-5=86 | | 3^(2x+1)=18^(x) | | 3+4x=4x=5 | | (2x+1)(5x+1)(4x+1)=0 | | 2×43=9x-14 | | 7(-1-8x)+2(8-2x)=9 | | (x²+5x)(x²+5x-3)-18=0 | | 4x+2=88 | | 2×67=16x-10 | | 2x+6+x=3(x+2) | | 2x=3(x-10)=45 |